Myc-driven murine prostate cancer shares molecular features with human prostate tumors

Katharine Ellwood-Yen,^{1,4} Thomas G. Graeber,^{3,5} John Wongvipat,^{1,4,5} M. Luisa Iruela-Arispe,⁶ JianFeng Zhang,^{7,8} Robert Matusik,⁷ George V. Thomas,^{2,*} and Charles L. Sawyers^{1,4,5,*}

(Cancer Cell 4, 223-238; September 2003)

During further characterization of the Hi-Myc and Lo-Myc prostate cancer transgenic mice, we discovered that 34 amino acids of additional sequence (derived from the Bluescript multiple cloning site) were inadvertently added to the C terminus of the human c-Myc protein during subcloning, creating an unintended C-terminal tag. Consequently, the transgenic Myc protein (Myc-Tg) runs with higher mobility than endogenous Myc (85–90 kDa versus 65 kDa). It is unlikely that the additional C-terminal sequences alter Myc function because the transforming activity of Myc-Tg was comparable to that of Myc in NIH3T3 fibroblast transformation assays (Table 1). Furthermore, proliferation of Myc-CaP cells, a new line derived from Hi-Myc prostate tumors, is restored by ectopic Myc expression when Myc-Tg levels are lowered by androgen withdrawal (Watson et al., 2005). Since untagged human Myc can compensate for loss of Myc-Tg function, we consider the Myc-Tg protein that is expressed in Hi-Myc and Lo-Myc to be an epitope-tagged Myc protein. Since the publication of our findings in mice, others have reported that overexpression of wild-type c-Myc is sufficient to induce tumor formation of normal human prostatic epithelial cells in a tissue recombination assay (Williams et al., 2005), confirming the oncogenic potential of Myc in prostate cancer.

Table 1	١.	Soft	agar	trans	formation	assay
---------	----	------	------	-------	-----------	-------

Cell type	Number of foci
3T3	1
3T3 Myc-wt	8
3T3 Myc-Tg	9
3T3 c-term 34 AA	2
3T3 Ras(KV12)	136
3T3 Myc-wt + Ras(KV12)	202
3T3 Myc-Tg + Ras(KV12)	224
3T3 c-term 34 aa + Ras(KV12)	168

NIH3T3 cells were transfected with a plasmid expressing Myc-wt, Myc-Tg, or the 34 amino acid tail added to the Myc-Tg alone or together with a plasmid expressing activated Ras(KV12) as indicated then grown in soft agar. The number of foci obtained after growth in soft agar is averaged in the column on the right.

References

Watson, P., Ellwood-Yen, K., King, J., Wongvipat, J., LeBeau, M., and Sawyers, C.L. (2005). Context dependent hormone-refractory progression revealed through characterization of a novel murine prostate cancer cell line. Cancer Res., in press.

Williams, K., Fernandez, S., Stien, X., Ishii, K., Love, H.D., Lau, Y.F., Roberts, R.L., and Hayward, S.W. (2005). Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. Prostate 63, 369–384.

DOI: 10.1016/j.ccr.2005.11.010

¹ Departments of Medicine, Urology, and Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095

²Department of Pathology, University of California, Los Angeles, Los Angeles, California 90095

³ UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095

⁴ Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095

⁵Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095

⁶Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095

⁷ Department of Urology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

⁸Department of Dermatology, University of Alabama, Birmingham, Alabama 35294

^{*}Correspondence: gvthomas@mednet.ucla.edu (G.V.T.); csawyers@mednet.ucla.edu (C.L.S.)